Showing posts with label Financial Engineering. Show all posts
Showing posts with label Financial Engineering. Show all posts

Tuesday, February 15, 2011

Masters in Finance or Financial Engineering

Masters in Finance or Financial Engineering, Mathematics Finance
full or part time/weekendmonthsTOEFLGMAT/GRE(*1)(*2)(*3)(*4)Application feetuitionlink
Columbia (FE)full12YesGRE?????$49,320link
Columbia (MF)full/part12/?YesGMAT/GRE(*6)?????$38,614link
NYUfull/part18/?YesGRE??????link
CUNYfull/part18/?-GMAT/GRE?Yes?Yes??link
Princetonfull12-24YesGMAT/GREYesYesYes-$70$38,620link
CornellGRE
Carnegie Mellon
Harvard
MIT
12YesGMAT/GRE$100.00$72,000link
Chicagofull/part12/24-36)YesGRE$44,892
Stanfordfull10.5-15YesGREYesYesYesYes$0$60,000(*5)link
UC Berkeleyfull12YesGMAT/GRE--YesYes(2)$225$50,565link
UCLA
LBSfull/weekend10/22YesGMATYesYesYesYes?£33,100link
Cambridgefull12YesGMAT(*6)Yes?YesYes?£33,780 link
Oxfordfull?????????link
(*1) curriculum vitae
(*2) personal statement / essay
(*3) undergraduate/graduate transcripts
(*4) letters of recommendation / referees
(*5) including estimated living expenses

(*6) recommended/optional, but not required



Reference:
Quant Network Ranking of Financial Engineering Programs

Thursday, January 27, 2011

Saturday, January 15, 2011

Black-Scholes Model

Black-Scholes Option Princing Model for dividend paying underlying assets VBA code (Premium only)


'// Author's blog:
'// Heart of the Finance
'// http://heartofthefinance.blogspot.com/
'//
'// Black-Scholes Option Princing Model for dividend paying underlying assets VBA code (Premium only)
'// version 1.0.0
'// Last update: 1/15/2011

Public Function BlackScholes(CallPutFlag As String, S As Double, K As Double, T As Double, r As Double, q As Double, v As Double) As Double

'S: spot price of an underlying asset
'K: strike price
'T: (T-t); time to maturity from today. i.e. T: time at maturity, t: today
'r: risk-free rate (annualized, continuous compounding)
'q: dividend yield (annualized, continuous compounding)
'v:volatility (standard deviation of return) of an underlying asset (annualized)


Dim d1 As Double, d2 As Double

d1 = (Log(S / K) + (r - q + v ^ 2 / 2) * T) / (v * Sqr(T))
d2 = d1 - v * Sqr(T)

If CallPutFlag = "c" Then

BlackScholes = Exp(-q * T) * S * CND(d1) - K * Exp(-r * T) * CND(d2)

ElseIf CallPutFlag = "p" Then

'BlackScholes = K * Exp(-r * T) * CND(-d2) - S * Exp(-q * T) * CND(-d1)
BlackScholes = K * Exp(-r * T) * (1 - CND(d2)) - S * Exp(-q * T) * (1 - CND(d1))

End If

End Function

'// The cumulative normal distribution function
Public Function CND(X As Double) As Double

Dim L As Double, K As Double
Const a1 = 0.31938153: Const a2 = -0.356563782: Const a3 = 1.781477937:
Const a4 = -1.821255978: Const a5 = 1.330274429

L = Abs(X)
K = 1 / (1 + 0.2316419 * L)
CND = 1 - 1 / Sqr(2 * Application.Pi()) * Exp(-L ^ 2 / 2) * (a1 * K + a2 * K ^ 2 + a3 * K ^ 3 + a4 * K ^ 4 + a5 * K ^ 5)

If X < 0 Then CND = 1 - CND End If End Function



Black-Scholes Option Princing Model for dividend paying underlying assets VBA code (Premium and Greeks)

'// Author's blog:
'// Heart of the Finance
'// http://heartofthefinance.blogspot.com/
'//
'// Black-Scholes Option Princing Model for dividend paying underlying assets VBA code (Premium and Greeks)
'// version 1.0.0
'// Last update: 1/15/2011

'****************************************************************************
'* Cumulative Standard Normal Distribution *
'* (This function provides similar result as NORMSDIST( ) on Excel) *
'****************************************************************************

Function SNorm(z)
c1 = 2.506628
c2 = 0.3193815
c3 = -0.3565638
c4 = 1.7814779
c5 = -1.821256
c6 = 1.3302744
If z > 0 Or z = 0 Then
w = 1
Else: w = -1
End If
y = 1 / (1 + 0.2316419 * w * z)
SNorm = 0.5 + w * (0.5 - (Exp(-z * z / 2) / c1) * _
(y * (c2 + y * (c3 + y * (c4 + y * (c5 + y * c6))))))

End Function

'**********************************************************************
'* Black-Scholes European Call Price Computation *
'**********************************************************************

Function Call_Eur(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

's: spot price of an underlying asset
'k: strike price
't: (T-t); time to maturity. i.e. T: maturity, t: current
'r: risk-free rate (annual rate, continuous compounding)
'q: dividend yield (annual rate, continuous compounding)
'sd:volatility (standard deviation of return) of an underlying asset

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Call_Eur = Exp(-q * t) * s * SNorm(d1) - k * Exp(-r * t) * SNorm(d2)

End Function

'*********************************************************************
'* Black-Scholes European Put Price Computation *
'*********************************************************************

Function Put_Eur(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

'Put-call parity
'Call_Eur_tmp = Exp(-q * t) * s * SNorm(d1) - k * Exp(-r * t) * SNorm(d2)
'Put_Eur = -s * Exp(-q * t) + Call_Eur_tmp + k * Exp(-r * t)

Put_Eur = k * Exp(-r * t) * (1 - SNorm(d2)) - s * Exp(-q * t) * (1 - SNorm(d1))

End Function


'**********************************************************************
'* Black-Scholes European Call Delta Computation *
'**********************************************************************

Function Call_Eur_Delta(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Call_Eur_Delta = Exp(-q * t) * SNorm(d1)

End Function

'*********************************************************************
'* Black-Scholes European Put Delta Computation *
'*********************************************************************

Function Put_Eur_Delta(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Put_Eur_Delta = -Exp(-q * t) * (1 - SNorm(d1))

End Function

'**********************************************************************
'* Black-Scholes European Call Gamma Computation *
'**********************************************************************

Function Call_Eur_Gamma(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Call_Eur_Gamma = Exp(-q * t) / (s * sd * t ^ 0.5) * Exp(-d1 ^ 2 / 2) / (2 * Application.WorksheetFunction.Pi()) ^ 0.5

End Function

'**********************************************************************
'* Black-Scholes European Put Gamma Computation *
'**********************************************************************

Function Put_Eur_Gamma(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Put_Eur_Gamma = Exp(-q * t) / (s * sd * t ^ 0.5) * Exp(-d1 ^ 2 / 2) / (2 * Application.WorksheetFunction.Pi()) ^ 0.5

End Function

'**********************************************************************
'* Black-Scholes European Call Vega Computation *
'**********************************************************************

Function Call_Eur_Vega(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Call_Eur_Vega = Exp(-q * t) * s * (t ^ 0.5) * Exp(-d1 ^ 2 / 2) / (2 * Application.WorksheetFunction.Pi()) ^ 0.5

End Function

'**********************************************************************
'* Black-Scholes European Put Vega Computation *
'**********************************************************************

Function Put_Eur_Vega(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Put_Eur_Vega = Exp(-q * t) * s * (t ^ 0.5) * Exp(-d1 ^ 2 / 2) / (2 * Application.WorksheetFunction.Pi()) ^ 0.5

End Function

'**********************************************************************
'* Black-Scholes European Call Theta Computation *
'**********************************************************************

Function Call_Eur_Theta(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Call_Eur_Theta = q * Exp(-q * t) * s * SNorm(d1) - Exp(-q * t) * s * sd / (2 * (t) ^ 0.5) * Exp(-d1 ^ 2 / 2) / (2 * Application.WorksheetFunction.Pi()) ^ 0.5 - k * r * Exp(-r * t) * SNorm(d2)

End Function

'**********************************************************************
'* Black-Scholes European Put Theta Computation *
'**********************************************************************

Function Put_Eur_Theta(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Put_Eur_Theta = q * Exp(-q * t) * s * (-1) * SNorm(-d1) - Exp(-q * t) * s * sd / (2 * (t) ^ 0.5) * Exp(-d1 ^ 2 / 2) / (2 * Application.WorksheetFunction.Pi()) ^ 0.5 + k * r * Exp(-r * t) * SNorm(-d2)

End Function


'**********************************************************************
'* Black-Scholes European Call Rho Computation *
'**********************************************************************

Function Call_Eur_Rho(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Call_Eur_Rho = k * t * Exp(-r * t) * SNorm(d2)

End Function


'**********************************************************************
'* Black-Scholes European Put Rho Computation *
'**********************************************************************

Function Put_Eur_Rho(s, k, t, r, q, sd)
Dim a As Single
Dim b As Single
Dim c As Single
Dim d1 As Single
Dim d2 As Single

a = Log(s / k)
b = (r - q + 0.5 * sd ^ 2) * t
c = sd * (t ^ 0.5)
d1 = (a + b) / c
d2 = d1 - sd * (t ^ 0.5)

Put_Eur_Rho = -k * t * Exp(-r * t) * SNorm(-d2)

End Function





Ref.
http://en.wikipedia.org/wiki/Black-Scholes
http://www.worldscibooks.com/etextbook/p556/p556_chap04.pdf
http://www.espenhaug.com/black_scholes.html

Saturday, January 8, 2011

Options, Futures, and Other Derivatives [With CDROM]/ John C. Hull

Amazon.com


Amazon.co.uk


Amazon.co.jp


Author's website
http://www.rotman.utoronto.ca/~hull/


Ordered on 1/18/2011 via Amazon.co.uk.
Order cancelled on 1/27/2011 due to the delay of the release.
Ordered on 2/2/2011 via Amazon.co.jp.
Order cancelled due to the delay.

Friday, December 17, 2010

The Concepts and Practice of Mathematical Finance 2nd Edition - Mark Joshi

This is a book recommended by RL, an ex-structurer at Société Générale, today. He said to me that this is the best book to understand derivatives from practical and theoretical point of view. I've just ordered it at Amazon.co.jp.

Amazon.com


Amazon.co.uk


Amazon.co.jp


Here is the link to the author's page:
http://www.markjoshi.com/
http://www.facebook.com/pages/Mark-Joshi/109959844817


12/19/2010
Arrived today.